Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8384, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600114

ABSTRACT

Spindle-shaped waves of oscillations emerge in EEG scalp recordings during human and rodent non-REM sleep. The association of these 10-16 Hz oscillations with events during prior wakefulness suggests a role in memory consolidation. Human and rodent depth electrodes in the brain record strong spindles throughout the cortex and hippocampus, with possible origins in the thalamus. However, the source and targets of the spindle oscillations from the hippocampus are unclear. Here, we employed an in vitro reconstruction of four subregions of the hippocampal formation with separate microfluidic tunnels for single axon communication between subregions assembled on top of a microelectrode array. We recorded spontaneous 400-1000 ms long spindle waves at 10-16 Hz in single axons passing between subregions as well as from individual neurons in those subregions. Spindles were nested within slow waves. The highest amplitudes and most frequent occurrence suggest origins in CA3 neurons that send feed-forward axons into CA1 and feedback axons into DG. Spindles had 50-70% slower conduction velocities than spikes and were not phase-locked to spikes suggesting that spindle mechanisms are independent of action potentials. Therefore, consolidation of declarative-cognitive memories in the hippocampus may be separate from the more easily accessible consolidation of memories related to thalamic motor function.


Subject(s)
Hippocampus , Thalamus , Humans , Hippocampus/physiology , Thalamus/physiology , Cerebral Cortex/physiology , Axons , Neurons , Electroencephalography , Sleep/physiology
2.
Front Neural Circuits ; 17: 1272925, 2023.
Article in English | MEDLINE | ID: mdl-38144878

ABSTRACT

The sub-regions of the hippocampal formation are essential for episodic learning and memory formation, yet the spike dynamics of each region contributing to this function are poorly understood, in part because of a lack of access to the inter-regional communicating axons. Here, we reconstructed hippocampal networks confined to four subcompartments in 2D cultures on a multi-electrode array that monitors individual communicating axons. In our novel device, somal, and axonal activity was measured simultaneously with the ability to ascertain the direction and speed of information transmission. Each sub-region and inter-regional axons had unique power-law spiking dynamics, indicating differences in computational functions, with abundant axonal feedback. After stimulation, spiking, and burst rates decreased in all sub-regions, spikes per burst generally decreased, intraburst spike rates increased, and burst duration decreased, which were specific for each sub-region. These changes in spiking dynamics post-stimulation were found to occupy a narrow range, consistent with the maintenance of the network at a critical state. Functional connections between the sub-region neurons and communicating axons in our device revealed homeostatic network routing strategies post-stimulation in which spontaneous feedback activity was selectively decreased and balanced by decreased feed-forward activity. Post-stimulation, the number of functional connections per array decreased, but the reliability of those connections increased. The networks maintained a balance in spiking and bursting dynamics in response to stimulation and sharpened network routing. These plastic characteristics of the network revealed the dynamic architecture of hippocampal computations in response to stimulation by selective routing on a spatiotemporal scale in single axons.


Subject(s)
Axons , Hippocampus , Reproducibility of Results , Hippocampus/physiology , Axons/physiology , Cerebral Cortex , Neurons/physiology
3.
Geroscience ; 45(2): 757-780, 2023 04.
Article in English | MEDLINE | ID: mdl-36622562

ABSTRACT

Increased interest in the aging and Alzheimer's disease (AD)-related impairments in autophagy in the brain raise important questions about regulation and treatment. Since many steps in endocytosis and autophagy depend on GTPases, new measures of cellular GTP levels are needed to evaluate energy regulation in aging and AD. The recent development of ratiometric GTP sensors (GEVALS) and findings that GTP levels are not homogenous inside cells raise new issues of regulation of GTPases by the local availability of GTP. In this review, we highlight the metabolism of GTP in relation to the Rab GTPases involved in formation of early endosomes, late endosomes, and lysosomal transport to execute the autophagic degradation of damaged cargo. Specific GTPases control macroautophagy (mitophagy), microautophagy, and chaperone-mediated autophagy (CMA). By inference, local GTP levels would control autophagy, if not in excess. Additional levels of control are imposed by the redox state of the cell, including thioredoxin involvement. Throughout this review, we emphasize the age-related changes that could contribute to deficits in GTP and AD. We conclude with prospects for boosting GTP levels and reversing age-related oxidative redox shift to restore autophagy. Therefore, GTP levels could regulate the numerous GTPases involved in endocytosis, autophagy, and vesicular trafficking. In aging, metabolic adaptation to a sedentary lifestyle could impair mitochondrial function generating less GTP and redox energy for healthy management of amyloid and tau proteostasis, synaptic function, and inflammation.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Autophagy/physiology , Endocytosis , rab GTP-Binding Proteins/metabolism , Brain/metabolism , Guanosine Triphosphate
4.
J Alzheimers Dis ; 90(4): 1501-1521, 2022.
Article in English | MEDLINE | ID: mdl-36278355

ABSTRACT

BACKGROUND: Many identified mechanisms could be upstream of the prominent amyloid-ß (Aß) plaques in Alzheimer's disease (AD). OBJECTIVE: To profile the progression of pathology in AD. METHODS: We monitored metabolic signaling, redox stress, intraneuronal amyloid-ß (iAß) accumulation, and extracellular plaque deposition in the brains of 3xTg-AD mice across the lifespan. RESULTS: Intracellular accumulation of aggregated Aß in the CA1 pyramidal cells at 9 months preceded extracellular plaques that first presented in the CA1 at 16 months of age. In biochemical assays, brain glutathione (GSH) declined with age in both 3xTg-AD and non-transgenic controls, but the decline was accelerated in 3xTg-AD brains from 2 to 4 months. The decline in GSH correlated exponentially with the rise in iAß. Integrated metabolic signaling as the ratio of phospho-Akt (pAkt) to total Akt (tAkt) in the PI3kinase and mTOR pathway declined at 6, 9, and 12 months, before rising at 16 and 20 months. These pAkt/tAkt ratios correlated with both iAß and GSH levels in a U-shaped relationship. Selective vulnerability of age-related AD-genotype-specific pAkt changes was greatest in the CA1 pyramidal cell layer. To demonstrate redox causation, iAß accumulation was lowered in cultured middle-age adult 3xTg-AD neurons by treatment of the oxidized redox state in the neurons with exogenous cysteine. CONCLUSION: The order of pathologic progression in the 3xTg-AD mouse was loss of GSH (oxidative redox shift) followed by a pAkt/tAkt metabolic shift in CA1, iAß accumulation in CA1, and extracellular Aß deposition. Upstream targets may prove strategically more effective for therapy before irreversible changes.


Subject(s)
Alzheimer Disease , Mice , Animals , Mice, Transgenic , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Disease Models, Animal , CA1 Region, Hippocampal/pathology , Glutathione/metabolism
5.
Front Neural Circuits ; 15: 660837, 2021.
Article in English | MEDLINE | ID: mdl-34512275

ABSTRACT

The tri-synaptic pathway in the mammalian hippocampus enables cognitive learning and memory. Despite decades of reports on anatomy and physiology, the functional architecture of the hippocampal network remains poorly understood in terms of the dynamics of axonal information transfer between subregions. Information inputs largely flow from the entorhinal cortex (EC) to the dentate gyrus (DG), and then are processed further in the CA3 and CA1 before returning to the EC. Here, we reconstructed elements of the rat hippocampus in a novel device over an electrode array that allowed for monitoring the directionality of individual axons between the subregions. The direction of spike propagation was determined by the transmission delay of the axons recorded between two electrodes in microfluidic tunnels. The majority of axons from the EC to the DG operated in the feed-forward direction, with other regions developing unexpectedly large proportions of feedback axons to balance excitation. Spike timing in axons between each region followed single exponential log-log distributions over two orders of magnitude from 0.01 to 1 s, indicating that conventional descriptors of mean firing rates are misleading assumptions. Most of the spiking occurred in bursts that required two exponentials to fit the distribution of inter-burst intervals. This suggested the presence of up-states and down-states in every region, with the least up-states in the DG to CA3 feed-forward axons and the CA3 subregion. The peaks of the log-normal distributions of intra-burst spike rates were similar in axons between regions with modes around 95 Hz distributed over an order of magnitude. Burst durations were also log-normally distributed around a peak of 88 ms over two orders of magnitude. Despite the diversity of these spike distributions, spike rates from individual axons were often linearly correlated to subregions. These linear relationships enabled the generation of structural connectivity graphs, not possible previously without the directional flow of axonal information. The rich axonal spike dynamics between subregions of the hippocampus reveal both constraints and broad emergent dynamics of hippocampal architecture. Knowledge of this network architecture may enable more efficient computational artificial intelligence (AI) networks, neuromorphic hardware, and stimulation and decoding from cognitive implants.


Subject(s)
Artificial Intelligence , Hippocampus , Animals , Axons , Cognition , Feedback , Rats
7.
J Alzheimers Dis ; 73(1): 229-246, 2020.
Article in English | MEDLINE | ID: mdl-31771065

ABSTRACT

This work provides new insight into the age-related basis of Alzheimer's disease (AD), the composition of intraneuronal amyloid (iAß), and the mechanism of an age-related increase in iAß in adult AD-model mouse neurons. A new end-specific antibody for Aß45 and another for aggregated forms of Aß provide new insight into the composition of iAß and the mechanism of accumulation in old adult neurons from the 3xTg-AD model mouse. iAß levels containing aggregates of Aß45 increased 30-50-fold in neurons from young to old age and were further stimulated upon glutamate treatment. iAß was 8 times more abundant in 3xTg-AD than non-transgenic neurons with imaged particle sizes following the same log-log distribution, suggesting a similar snow-ball mechanism of intracellular biogenesis. Pathologically misfolded and mislocalized Alz50 tau colocalized with iAß and rapidly increased following a brief metabolic stress with glutamate. AßPP-CTF, Aß45, and aggregated Aß colocalized most strongly with mitochondria and endosomes and less with lysosomes and autophagosomes. Differences in iAß by sex were minor. These results suggest that incomplete carboxyl-terminal trimming of long Aßs by gamma-secretase produced large intracellular deposits which limited completion of autophagy in aged neurons. Understanding the mechanism of age-related changes in iAß processing may lead to application of countermeasures to prolong dementia-free health span.


Subject(s)
Amyloid beta-Peptides/metabolism , Autophagosomes/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Mitochondria/metabolism , Neurons/metabolism , Aging/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cells, Cultured , Glutamic Acid/pharmacology , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Neurons/ultrastructure , Particle Size
8.
Sci Rep ; 9(1): 11274, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375701

ABSTRACT

Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD+) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer's disease (AD) is associated with oxidative shifts, decreases in anti-oxidant protection and dysfunction of mitochondria. Here, we examined the flexibility of mitochondrial-specific free NADH in live neurons from non-transgenic (NTg) or triple transgenic AD-like mice (3xTg-AD) of different ages under an imposed extracellular Cys/CySS oxidative or reductive condition. We used phasor fluorescence lifetime imaging microscopy (FLIM) to distinguish free and bound NADH in mitochondria, nuclei and cytoplasm. Under an external oxidative stress, a lower capacity for maintaining mitochondrial free NADH levels was found in old compared to young neurons and a further decline with genetic load. Remarkably, an imposed Cys/CySS reductive state rejuvenated the mitochondrial free NADH levels of old NTg neurons by 71% and old 3xTg-AD neurons by 89% to levels corresponding to the young neurons. Using FLIM as a non-invasive approach, we were able to measure the reversibility of aging subcellular free NADH levels in live neurons. Our results suggest a potential reductive treatment to reverse the loss of free NADH in old and Alzheimer's neurons.


Subject(s)
Aging/pathology , Cysteine/metabolism , Cystine/metabolism , NAD/metabolism , Neurons/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Cell Nucleus/pathology , Cells, Cultured , Cellular Senescence , Cytoplasm/pathology , Disease Models, Animal , Energy Metabolism , Female , Hippocampus/cytology , Hippocampus/pathology , Humans , Intravital Microscopy , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence , Mitochondria/pathology , NAD/analysis , Neurons/cytology , Oxidation-Reduction , Oxidative Stress/physiology , Primary Cell Culture
9.
J Alzheimers Dis ; 71(1): 119-140, 2019.
Article in English | MEDLINE | ID: mdl-31356210

ABSTRACT

Age and Alzheimer's disease (AD) share some common features such as cognitive impairments, memory loss, metabolic disturbances, bioenergetic deficits, and inflammation. Yet little is known on how systematic shifts in metabolic networks depend on age and AD. In this work, we investigated the global metabolomic alterations in non-transgenic (NTg) and triple-transgenic (3xTg-AD) mouse brain hippocampus as a function of age by using untargeted Ultrahigh Performance Liquid Chromatography-tandem Mass Spectroscopy (UPLC-MS/MS). We observed common metabolic patterns with aging in both NTg and 3xTg-AD brains involved in energy-generating pathways, fatty acids oxidation, glutamate, and sphingolipid metabolism. We found age-related downregulation of metabolites from reactions in glycolysis that consumed ATP and in the TCA cycle, especially at NAD+/NADH-dependent redox sites, where age- and AD-associated limitations in the free NADH may alter reactions. Conversely, metabolites increased in glycolytic reactions in which ATP is produced. With age, inputs to the TCA cycle were increased including fatty acid ß-oxidation and glutamine. Overall age- and AD-related changes were > 2-fold when comparing the declines of upstream metabolites of NAD+/NADH-dependent reactions to the increases of downstream metabolites (p = 10-5, n = 8 redox reactions). Inflammatory metabolites such as ceramides and sphingosine-1-phosphate also increased with age. Age-related decreases in glutamate, GABA, and sphingolipid were seen which worsened with AD genetic load in 3xTg-AD brains, possibly contributing to synaptic, learning- and memory-related deficits. The data support the novel hypothesis that age- and AD-associated metabolic shifts respond to NAD(P)+/NAD(P)H redox-dependent reactions, which may contribute to decreased energetic capacity.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , NAD/metabolism , Animals , Caenorhabditis elegans Proteins , Carrier Proteins , Citric Acid Cycle , Disease Models, Animal , Energy Metabolism , Female , Hippocampus/metabolism , Male , Metabolome , Mice , Mice, Transgenic , NADP/metabolism , Oxidation-Reduction
10.
Geroscience ; 41(1): 51-67, 2019 02.
Article in English | MEDLINE | ID: mdl-30729413

ABSTRACT

Nicotinamide adenine dinucleotide (reduced form: NADH) serves as a vital redox-energy currency for reduction-oxidation homeostasis and fulfilling energetic demands. While NADH exists as free and bound forms, only free NADH is utilized for complex I to power oxidative phosphorylation, especially important in neurons. Here, we studied how much free NADH remains available for energy production in mitochondria of old living neurons. We hypothesize that free NADH in neurons from old mice is lower than the levels in young mice and even lower in neurons from the 3xTg-AD Alzheimer's disease (AD) mouse model. To assess free NADH, we used lifetime imaging of NADH autofluorescence with 2-photon excitation to be able to resolve the pool of NADH in mitochondria, cytoplasm, and nuclei. Primary neurons from old mice were characterized by a lower free/bound NADH ratio than young neurons from both non-transgenic (NTg) and more so in 3xTg-AD mice. Mitochondrial compartments maintained 26 to 41% more reducing NADH redox state than cytoplasm for each age, genotype, and sex. Aging diminished the mitochondrial free NADH concentration in NTg neurons by 43% and in 3xTg-AD by 50%. The lower free NADH with age suggests a decline in capacity to regenerate free NADH for energetic supply to power oxidative phosphorylation which further worsens in AD. Applying this non-invasive approach, we showed the most explicit measures yet of bioenergetic deficits in free NADH with aging at the subcellular level in live neurons from in-bred mice and an AD model.


Subject(s)
Aging/metabolism , Alzheimer Disease/enzymology , Mitochondria/enzymology , NAD/classification , NAD/metabolism , Neurons/enzymology , Animals , Disease Models, Animal , Genotype , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Mitochondria/pathology , Neurons/ultrastructure , Optical Imaging , Oxidation-Reduction , Oxidative Phosphorylation , Sex Characteristics , tau Proteins/genetics
11.
J Neural Eng ; 15(4): 046009, 2018 08.
Article in English | MEDLINE | ID: mdl-29623900

ABSTRACT

OBJECTIVE: Functions ascribed to the hippocampal sub-regions for encoding episodic memories include the separation of activity patterns propagated from the entorhinal cortex (EC) into the dentate gyrus (DG) and pattern completion in CA3 region. Since a direct assessment of these functions is lacking at the level of specific axonal inputs, our goal is to directly measure the separation and completion of distinct axonal inputs in engineered pairs of hippocampal sub-regional circuits. APPROACH: We co-cultured EC-DG, DG-CA3, CA3-CA1 or CA1-EC neurons in a two-chamber PDMS device over a micro-electrode array (MEA60), inter-connected via distinct axons that grow through the micro-tunnels between the compartments. Taking advantage of the axonal accessibility, we quantified pattern separation and completion of the evoked activity transmitted through the tunnels from source into target well. Since pattern separation can be inferred when inputs are more correlated than outputs, we first compared the correlations among axonal inputs with those of target somata outputs. We then compared, in an analog approach, the distributions of correlation distances between rate patterns of the axonal inputs inside the tunnels with those of the somata outputs evoked in the target well. Finally, in a digital approach, we measured the spatial population distances between binary patterns of the same axonal inputs and somata outputs. MAIN RESULTS: We found the strongest separation of the propagated axonal inputs when EC was axonally connected to DG, with a decline in separation to CA3 and to CA1 for both rate and digital approaches. Furthermore, the digital approach showed stronger pattern completion in CA3, then CA1 and EC. SIGNIFICANCE: To the best of our knowledge, these are the first direct measures of pattern separation and completion for axonal transmission to the somata target outputs at the rate and digital population levels in each of four stages of the EC-DG-CA3-CA1 circuit.


Subject(s)
Axons/physiology , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Dentate Gyrus/physiology , Entorhinal Cortex/physiology , Nerve Net/physiology , Animals , Animals, Newborn , CA1 Region, Hippocampal/cytology , CA3 Region, Hippocampal/cytology , Coculture Techniques , Dentate Gyrus/cytology , Entorhinal Cortex/cytology , Microfluidic Analytical Techniques/methods , Nerve Net/cytology , Rats
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3628-3631, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060684

ABSTRACT

CA3 and dentate gyrus (DG) neurons are cultured in two-chamber devices on multi-electrode arrays (MEAs) and connected via micro-tunnels. In order to evoke time-locked activity, paired-pulse stimulation is applied to 22 different sites and repeated 25 times in each well in 5 MEA co-cultures and results compared to CA3-CA3 and DG-DG networks homologous controls. In these hippocampal sub-regions, we focus on the mechanisms underpinning a network's ability to decode the identity of site specific stimulation from analysis of evoked network responses using a support vector machine classifier. Our results indicate that a pool of CA3 neurons is able to reliably decode the identity of DG stimulation site information.


Subject(s)
Dentate Gyrus , Cardiovascular Physiological Phenomena , Coculture Techniques , Electric Stimulation , Hippocampus
13.
PLoS One ; 12(5): e0176868, 2017.
Article in English | MEDLINE | ID: mdl-28493886

ABSTRACT

Communication between different sub regions of the hippocampus is fundamental to learning and memory. However accurate knowledge about information transfer between sub regions from access to the activity in individual axons is lacking. MEMS devices with microtunnels connecting two sub networks have begun to approach this problem but the commonly used 10 µm wide tunnels frequently measure signals from multiple axons. To reduce this complexity, we compared polydimethylsiloxane (PDMS) microtunnel devices each with a separate tunnel width of 2.5, 5 or 10 µm bridging two wells aligned over a multi electrode array (MEA). Primary rat neurons were grown in the chambers with neurons from the dentate gyrus on one side and hippocampal CA3 on the other. After 2-3 weeks of culture, spontaneous activity in the axons inside the tunnels was recorded. We report electrophysiological, exploratory data analysis for feature clustering and visual evidence to support the expectation that 2.5 µm wide tunnels have fewer axons per tunnel and therefore more clearly delineated signals than 10 or 5 µm wide tunnels. Several measures indicated that fewer axons per electrode enabled more accurate detection of spikes. A clustering analysis comparing the variations of spike height and width for different tunnel widths revealed tighter clusters representing unique spikes with less height and width variation when measured in narrow tunnels. Wider tunnels tended toward more diffuse clusters from a continuum of spike heights and widths. Standard deviations for multiple cluster measures, such as Average Dissimilarity, Silhouette Value (S) and Separation Factor (average dissimilarity/S value), support a conclusion that 2.5 µm wide tunnels containing fewer axons enable more precise determination of individual action potential peaks, their propagation direction, timing, and information transfer between sub networks.


Subject(s)
Axons/physiology , Hippocampus/physiology , Micro-Electrical-Mechanical Systems/methods , Nerve Net/physiology , Action Potentials/physiology , Animals , Microelectrodes , Microscopy, Confocal , Neural Conduction/physiology , Rats, Sprague-Dawley
14.
Front Neural Circuits ; 11: 13, 2017.
Article in English | MEDLINE | ID: mdl-28321182

ABSTRACT

To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 µm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the trials, significantly higher than the reverse, i.e., how well-recording in DG could predict the stimulation site in CA3. In conclusion, our co-cultured model for the in vivo DG-CA3 hippocampal network showed sparse and specific responses in CA3, selectively evoked by each stimulation site in DG.


Subject(s)
CA3 Region, Hippocampal/physiology , Dentate Gyrus/physiology , Evoked Potentials/physiology , Machine Learning , Nerve Net/physiology , Neurons/physiology , Animals , Cells, Cultured , Microelectrodes , Models, Neurological , Rats
15.
Front Neural Circuits ; 10: 45, 2016.
Article in English | MEDLINE | ID: mdl-27445701

ABSTRACT

Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times of activation (motifs) emerge from anatomically accurate feed-forward connections from DG through tunnels to CA3.


Subject(s)
CA3 Region, Hippocampal/physiology , Dentate Gyrus/physiology , Electrophysiological Phenomena , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Animals , Rats
16.
Front Neural Circuits ; 10: 32, 2016.
Article in English | MEDLINE | ID: mdl-27147977

ABSTRACT

Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura's and van Rossum's spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/cytology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Analysis of Variance , Animals , Biophysical Phenomena/physiology , Biophysics , Cells, Cultured , Electric Stimulation , Embryo, Mammalian , In Vitro Techniques , Neurons/classification , Patch-Clamp Techniques , Principal Component Analysis , Rats , Synaptic Transmission/physiology
17.
J Alzheimers Dis ; 49(2): 301-16, 2016.
Article in English | MEDLINE | ID: mdl-26484899

ABSTRACT

It is unclear whether pre-symptomatic Alzheimer's disease (AD) causes circadian disruption or whether circadian disruption accelerates AD pathogenesis. In order to examine the sensitivity of learning and memory to circadian disruption, we altered normal lighting phases by an 8 h shortening of the dark period every 3 days (jet lag) in the APPSwDI NOS2-/- model of AD (AD-Tg) at a young age (4-5 months), when memory is not yet affected compared to non-transgenic (non-Tg) mice. Analysis of activity in 12-12 h lighting or constant darkness showed only minor differences between AD-Tg and non-Tg mice. Jet lag greatly reduced activity in both genotypes during the normal dark time. Learning on the Morris water maze was significantly impaired only in the AD-Tg mice exposed to jet lag. However, memory 3 days after training was impaired in both genotypes. Jet lag caused a decrease of glutathione (GSH) levels that tended to be more pronounced in AD-Tg than in non-Tg brains and an associated increase in NADH levels in both genotypes. Lower brain GSH levels after jet lag correlated with poor performance on the maze. These data indicate that the combination of the environmental stress of circadian disruption together with latent stress of the mutant amyloid and NOS2 knockout contributes to cognitive deficits that correlate with lower GSH levels.


Subject(s)
Alzheimer Disease/complications , Brain/metabolism , Chronobiology Disorders/etiology , Glutathione Disulfide/metabolism , Glutathione/metabolism , Memory Disorders/etiology , Age Factors , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Analysis of Variance , Animals , Brain/pathology , Chromatography, High Pressure Liquid , Chronobiology Disorders/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Memory Disorders/genetics , Mice , Mice, Transgenic , Mutation/genetics , NADP/metabolism , Nitric Oxide Synthase Type II/deficiency , Nitric Oxide Synthase Type II/genetics , Oxidation-Reduction
18.
Article in English | MEDLINE | ID: mdl-26236198

ABSTRACT

We report the design and application of a Micro Electro Mechanical Systems (MEMs) device that permits investigators to create arbitrary network topologies. With this device investigators can manipulate the degree of functional connectivity among distinct neural populations by systematically altering their geometric connectivity in vitro. Each polydimethylsilxane (PDMS) device was cast from molds and consisted of two wells each containing a small neural population of dissociated rat cortical neurons. Wells were separated by a series of parallel micrometer scale tunnels that permitted passage of axonal processes but not somata; with the device placed over an 8 × 8 microelectrode array, action potentials from somata in wells and axons in microtunnels can be recorded and stimulated. In our earlier report we showed that a one week delay in plating of neurons from one well to the other led to a filling and blocking of the microtunnels by axons from the older well resulting in strong directionality (older to younger) of both axon action potentials in tunnels and longer duration and more slowly propagating bursts of action potentials between wells. Here we show that changing the number of tunnels, and hence the number of axons, connecting the two wells leads to changes in connectivity and propagation of bursting activity. More specifically, the greater the number of tunnels the stronger the connectivity, the greater the probability of bursting propagating between wells, and shorter peak-to-peak delays between bursts and time to first spike measured in the opposing well. We estimate that a minimum of 100 axons are needed to reliably initiate a burst in the opposing well. This device provides a tool for researchers interested in understanding network dynamics who will profit from having the ability to design both the degree and directionality connectivity among multiple small neural populations.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/cytology , Nerve Net/physiology , Neurons/physiology , Analysis of Variance , Animals , Cells, Cultured , Embryo, Mammalian , Fluoresceins/metabolism , Microelectrodes , Rats
19.
J Alzheimers Dis ; 42(1): 313-24, 2014.
Article in English | MEDLINE | ID: mdl-24844688

ABSTRACT

The extracellular redox environment of cells is mainly set by the redox couple cysteine/cystine (cys/cySS) while intracellular redox is buffered by reduced/oxidized glutathione (GSH/GSSG), but controlled by NAD(P)H/NAD(P). With aging, the extracellular redox environment shifts in the oxidized direction beyond middle-age. Since aging is the primary risk factor in Alzheimer's disease (AD), here our aim was to determine if a reduced extracellular cys/cySS redox potential of cultured primary mouse neurons changes the intracellular redox environment, affects pAkt levels, and protects against neuron loss. A reductive shift in cys/cySS in the extracellular medium of neuron cultures from young (4 month) and old (21 month) neurons from non-transgenic) and triple transgenic AD-like mice (3xTg-AD) caused an increase in intracellular NAD(P)H and GSH levels along with lower reactive oxygen species levels. Importantly, the imposed reductive shift decreased neuron death markedly in the 21 month neurons of both genotypes. Moreover, a reduced cys/cySS redox state increased the pAkt/Akt ratio in 21 month aging and AD-like neurons that positively correlated with a decreased neuron loss. Our findings demonstrate that manipulating the extracellular redox environment toward a more reduced redox potential is neuroprotective in both aging and AD-like neurons and may be a powerful and pragmatic therapeutic tool in aging and age-related diseases like AD.


Subject(s)
Alzheimer Disease/physiopathology , Cysteine/metabolism , Cystine/metabolism , Extracellular Space/metabolism , Neurons/physiology , Proto-Oncogene Proteins c-akt/metabolism , Aging/physiology , Animals , Cell Death/physiology , Cells, Cultured , Disease Models, Animal , Glutathione/metabolism , Male , Mice , Mice, Transgenic , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
20.
Aging Cell ; 13(4): 631-40, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24655393

ABSTRACT

Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Glutathione/metabolism , NADP/metabolism , Nerve Degeneration/pathology , Neurons/pathology , Aging/genetics , Aging/pathology , Alzheimer Disease/enzymology , Animals , Buffers , Cell Death , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation, Enzymologic , Mice , Mice, Transgenic , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , Nerve Degeneration/enzymology , Nerve Degeneration/genetics , Neurons/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...